defphase1(pre, target): pre = codecs.decode(pre.encode(), 'hex') for x in itertools.product(range(256), repeat=3): skr = pre + b''.join([t.to_bytes(1, 'big') for t in x]) if hashlib.sha256(skr).hexdigest() == target: print(f'find {skr}') return codecs.encode(skr, 'hex').decode()
这里给出了 m 的高440位,我们只需要推断剩余的低 72 位。记真实的 m 为$highM+x$,则$m^3−c=(highM+x)^3−c=0$,这个方程的根很小,可以直接求解。
1 2 3 4 5 6 7 8 9 10 11 12
defphase2(high_m, n, c): R.<x> = PolynomialRing(Zmod(n), implementation='NTL') m = high_m + x M = m((m^3 - c).small_roots()[0]) print(hex(int(M))[2:])
n = 13112061820685643239663831166928327119579425830632458568801544406506769461279590962772340249183569437559394200635526183698604582385769381159563710823689417274479549627596095398621182995891454516953722025068926293512505383125227579169778946631369961753587856344582257683672313230378603324005337788913902434023431887061454368566100747618582590270385918204656156089053519709536001906964008635708510672550219546894006091483520355436091053866312718431318498783637712773878423777467316605865516248176248780637132615807886272029843770186833425792049108187487338237850806203728217374848799250419859646871057096297020670904211 c = 15987554724003100295326076036413163634398600947695096857803937998969441763014731720375196104010794555868069024393647966040593258267888463732184495020709457560043050577198988363754703741636088089472488971050324654162166657678376557110492703712286306868843728466224887550827162442026262163340935333721705267432790268517 high_m = 2519188594271759205757864486097605540135407501571078627238849443561219057751843170540261842677239681908736
phase2(high_m, n, c) # 464c41477b325e3872736137353839363933666336383963373763356635323632643635343237323432377d
Coppersmith 可以解决多项式在模 n 的某个因数下的根。我们设$p=pHigh+x$,然后拿去求解方程$p=0(mod\ sth\ divides\ n)$,得到 p 之后即可推出私钥。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
defphase3(high_p, n, c): R.<x> = PolynomialRing(Zmod(n), implementation='NTL') p = high_p + x x0 = p.small_roots(X = 2^128, beta = 0.1)[0] P = int(p(x0)) Q = n // P assert n == P*Q d = inverse_mod(65537, (P-1)*(Q-1)) print(hex(power_mod(c, d, n))) n = 12784625729032789592766625203074018101354917751492952685083808825504221816847310910447532133616954262271205877651255598995305639194329607493047941212754523879402744065076183778452640602625242851184095546100200565113016690161053808950384458996881574266573992526357954507491397978278604102524731393059303476350167738237822647246425836482533150025923051544431330502522043833872580483142594571802189321599016725741260254170793393777293145010525686561904427613648184843619301241414264343057368192416551134404100386155751297424616254697041043851852081071306219462991969849123668248321130382231769250865190227630009181759219 c = 627824086157119245056478875800598959553774250161670787506083253960788230737588761787385686125828765665617567887904228030839535317987589608761534500003128247164233774794784231518212804270056404565710426613938264302998015421153393879729263551292024543756422702956470022959537221269172084619081368498693930550456153543628170306324206266216348386707008661128717431426237486511309767286175518238620230507201952867261283880986868752676549613958785288914989429224582849218395471672295410036858881836363364885164276983237312235831591858044908369376855484127614933545955544787160352042318378588039587911741028067576722790778 high_p = 97522826022187678545924975588711975512906538181361325096919121233043973599759518562689050415761485716705615149641768982838255403594331293651224395590747133152128042950062103156564440155088882592644046069208405360324372057140890317518802130081198060093576841538008960560391380395697098964411821716664506908672
defgetFullP(low_p, n): R.<x> = PolynomialRing(Zmod(n), implementation='NTL') p = x*2^512 + low_p root = (p-n).monic().small_roots(X = 2^128, beta = 0.4) if root: return p(root[0]) returnNone defphase4(low_d, n, c): maybe_p = [] for k inrange(1, 4): p = var('p') p0 = solve_mod([3*p*low_d == p + k*(n*p - p^2 - n + p)], 2^512) maybe_p += [int(x[0]) for x in p0] print(maybe_p) for x in maybe_p: P = getFullP(x, n) if P: break P = int(P) Q = n // P assert P*Q == n d = inverse_mod(3, (P-1)*(Q-1)) print(hex(power_mod(c, d, n))[2:])
n = 92896523979616431783569762645945918751162321185159790302085768095763248357146198882641160678623069857011832929179987623492267852304178894461486295864091871341339490870689110279720283415976342208476126414933914026436666789270209690168581379143120688241413470569887426810705898518783625903350928784794371176183 c = 56164378185049402404287763972280630295410174183649054805947329504892979921131852321281317326306506444145699012788547718091371389698969718830761120076359634262880912417797038049510647237337251037070369278596191506725812511682495575589039521646062521091457438869068866365907962691742604895495670783101319608530 low_d = 787673996295376297668171075170955852109814939442242049800811601753001897317556022653997651874897208487913321031340711138331360350633965420642045383644955
phase4(low_d, n, c) # 464c41477b325e3872736135616230383637343566366563373435363139613862363566653465633536307d
""" Setting debug to true will display more informations about the lattice, the bounds, the vectors... """ debug = True
""" Setting strict to true will stop the algorithm (and return (-1, -1)) if we don't have a correct upperbound on the determinant. Note that this doesn't necesseraly mean that no solutions will be found since the theoretical upperbound is usualy far away from actual results. That is why you should probably use `strict = False` """ strict = False
""" This is experimental, but has provided remarkable results so far. It tries to reduce the lattice as much as it can while keeping its efficiency. I see no reason not to use this option, but if things don't work, you should try disabling it """ helpful_only = True dimension_min = 7# stop removing if lattice reaches that dimension
# display stats on helpful vectors defhelpful_vectors(BB, modulus): nothelpful = 0 for ii inrange(BB.dimensions()[0]): if BB[ii,ii] >= modulus: nothelpful += 1
print (nothelpful, "/", BB.dimensions()[0], " vectors are not helpful")
# display matrix picture with 0 and X defmatrix_overview(BB, bound): for ii inrange(BB.dimensions()[0]): a = ('%02d ' % ii) for jj inrange(BB.dimensions()[1]): a += '0'if BB[ii,jj] == 0else'X' if BB.dimensions()[0] < 60: a += ' ' if BB[ii, ii] >= bound: a += '~' print (a)
# tries to remove unhelpful vectors # we start at current = n-1 (last vector) defremove_unhelpful(BB, monomials, bound, current): # end of our recursive function if current == -1or BB.dimensions()[0] <= dimension_min: return BB
# we start by checking from the end for ii inrange(current, -1, -1): # if it is unhelpful: if BB[ii, ii] >= bound: affected_vectors = 0 affected_vector_index = 0 # let's check if it affects other vectors for jj inrange(ii + 1, BB.dimensions()[0]): # if another vector is affected: # we increase the count if BB[jj, ii] != 0: affected_vectors += 1 affected_vector_index = jj
# level:0 # if no other vectors end up affected # we remove it if affected_vectors == 0: print ("* removing unhelpful vector", ii) BB = BB.delete_columns([ii]) BB = BB.delete_rows([ii]) monomials.pop(ii) BB = remove_unhelpful(BB, monomials, bound, ii-1) return BB
# level:1 # if just one was affected we check # if it is affecting someone else elif affected_vectors == 1: affected_deeper = True for kk inrange(affected_vector_index + 1, BB.dimensions()[0]): # if it is affecting even one vector # we give up on this one if BB[kk, affected_vector_index] != 0: affected_deeper = False # remove both it if no other vector was affected and # this helpful vector is not helpful enough # compared to our unhelpful one if affected_deeper andabs(bound - BB[affected_vector_index, affected_vector_index]) < abs(bound - BB[ii, ii]): print ("* removing unhelpful vectors", ii, "and", affected_vector_index) BB = BB.delete_columns([affected_vector_index, ii]) BB = BB.delete_rows([affected_vector_index, ii]) monomials.pop(affected_vector_index) monomials.pop(ii) BB = remove_unhelpful(BB, monomials, bound, ii-1) return BB # nothing happened return BB
""" Returns: * 0,0 if it fails * -1,-1 if `strict=true`, and determinant doesn't bound * x0,y0 the solutions of `pol` """ defboneh_durfee(pol, modulus, mm, tt, XX, YY): """ Boneh and Durfee revisited by Herrmann and May finds a solution if: * d < N^delta * |x| < e^delta * |y| < e^0.5 whenever delta < 1 - sqrt(2)/2 ~ 0.292 """
# x-shifts gg = [] for kk inrange(mm + 1): for ii inrange(mm - kk + 1): xshift = x^ii * modulus^(mm - kk) * polZ(u, x, y)^kk gg.append(xshift) gg.sort()
# x-shifts list of monomials monomials = [] for polynomial in gg: for monomial in polynomial.monomials(): if monomial notin monomials: monomials.append(monomial) monomials.sort() # y-shifts (selected by Herrman and May) for jj inrange(1, tt + 1): for kk inrange(floor(mm/tt) * jj, mm + 1): yshift = y^jj * polZ(u, x, y)^kk * modulus^(mm - kk) yshift = Q(yshift).lift() gg.append(yshift) # substitution # y-shifts list of monomials for jj inrange(1, tt + 1): for kk inrange(floor(mm/tt) * jj, mm + 1): monomials.append(u^kk * y^jj)
# construct lattice B nn = len(monomials) BB = Matrix(ZZ, nn) for ii inrange(nn): BB[ii, 0] = gg[ii](0, 0, 0) for jj inrange(1, ii + 1): if monomials[jj] in gg[ii].monomials(): BB[ii, jj] = gg[ii].monomial_coefficient(monomials[jj]) * monomials[jj](UU,XX,YY)
# Prototype to reduce the lattice if helpful_only: # automatically remove BB = remove_unhelpful(BB, monomials, modulus^mm, nn-1) # reset dimension nn = BB.dimensions()[0] if nn == 0: print ("failure") return0,0
# check if vectors are helpful if debug: helpful_vectors(BB, modulus^mm) # check if determinant is correctly bounded det = BB.det() bound = modulus^(mm*nn) if det >= bound: print ("We do not have det < bound. Solutions might not be found.") print ("Try with highers m and t.") if debug: diff = (log(det) - log(bound)) / log(2) print ("size det(L) - size e^(m*n) = ", floor(diff)) if strict: return -1, -1 else: print ("det(L) < e^(m*n) (good! If a solution exists < N^delta, it will be found)")
# display the lattice basis if debug: matrix_overview(BB, modulus^mm)
# LLL if debug: print ("optimizing basis of the lattice via LLL, this can take a long time")
BB = BB.LLL()
if debug: print ("LLL is done!")
# transform vector i & j -> polynomials 1 & 2 if debug: print ("looking for independent vectors in the lattice") found_polynomials = False for pol1_idx inrange(nn - 1): for pol2_idx inrange(pol1_idx + 1, nn): # for i and j, create the two polynomials PR.<w,z> = PolynomialRing(ZZ) pol1 = pol2 = 0 for jj inrange(nn): pol1 += monomials[jj](w*z+1,w,z) * BB[pol1_idx, jj] / monomials[jj](UU,XX,YY) pol2 += monomials[jj](w*z+1,w,z) * BB[pol2_idx, jj] / monomials[jj](UU,XX,YY)
# are these good polynomials? if rr.is_zero() or rr.monomials() == [1]: continue else: print ("found them, using vectors", pol1_idx, "and", pol2_idx) found_polynomials = True break if found_polynomials: break
ifnot found_polynomials: print ("no independant vectors could be found. This should very rarely happen...") return0, 0 rr = rr(q, q)
# solutions soly = rr.roots()
iflen(soly) == 0: print ("Your prediction (delta) is too small") return0, 0
soly = soly[0][0] ss = pol1(q, soly) solx = ss.roots()[0][0]
# return solx, soly
defexample(): ############################################ # How To Use This Script ##########################################
# # The problem to solve (edit the following values) #
# the modulus N = 0xbadd260d14ea665b62e7d2e634f20a6382ac369cd44017305b69cf3a2694667ee651acded7085e0757d169b090f29f3f86fec255746674ffa8a6a3e1c9e1861003eb39f82cf74d84cc18e345f60865f998b33fc182a1a4ffa71f5ae48a1b5cb4c5f154b0997dc9b001e441815ce59c6c825f064fdca678858758dc2cebbc4d27 # the public exponent e = 0x11722b54dd6f3ad9ce81da6f6ecb0acaf2cbc3885841d08b32abc0672d1a7293f9856db8f9407dc05f6f373a2d9246752a7cc7b1b6923f1827adfaeefc811e6e5989cce9f00897cfc1fc57987cce4862b5343bc8e91ddf2bd9e23aea9316a69f28f407cfe324d546a7dde13eb0bd052f694aefe8ec0f5298800277dbab4a33bb
# the hypothesis on the private exponent (the theoretical maximum is 0.292) delta = 0.280# this means that d < N^delta
# # Lattice (tweak those values) #
# you should tweak this (after a first run), (e.g. increment it until a solution is found) m = 4# size of the lattice (bigger the better/slower)
# you need to be a lattice master to tweak these t = int((1-2*delta) * m) # optimization from Herrmann and May X = 2*floor(N^delta) # this _might_ be too much Y = floor(N^(1/2)) # correct if p, q are ~ same size
# # Don't touch anything below #
# Problem put in equation P.<x,y> = PolynomialRing(ZZ) A = int((N+1)/2) pol = 1 + x * (A + y)